
RiveScript Coverage Plugin
Documentation

Release 0.1.0

Joe Cool

Mar 29, 2020

Contents

1 Features 3

2 Getting Started 5
2.1 More Information: . 5
2.2 Feedback . 9

i

ii

RiveScript Coverage Plugin Documentation, Release 0.1.0

A plug-in to measure code coverage in RiveScript with python

Contents 1

http://badge.fury.io/py/rivescript_coverage_plugin
https://travis-ci.org/snoopyjc/rivescript_coverage_plugin

RiveScript Coverage Plugin Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Features

The RiveScript Coverage Plugin is a plugin for Coverage.py which extends that package to measure code coverage
for RiveScript files. It uses code analysis tools and debug hooks provided by the RiveScript interpreter to determine
which lines are executable, and which have been executed. It supports CPython version 3.6 and above and plugs into
Coverage.py version 5.0 and above. It requires RiveScript 1.14.9 or above.

Documentation is on Read The Docs. Code repository and issue tracker are on GitHub.

3

https://rivescript-coverage-plugin.readthedocs.io/
https://github.com/snoopyjc/rivescript_coverage_plugin

RiveScript Coverage Plugin Documentation, Release 0.1.0

4 Chapter 1. Features

CHAPTER 2

Getting Started

1. Use pip to install:

$ pip install rivescript_coverage_plugin

2. Create or edit your .coveragerc file and add this:

[run]
plugins = rivescript_coverage_plugin

3. Run the coverage command or pytest with the --cov option and your RiveScript files will automatically
be included in the coverage analysis and subsequent report generation.

Note that just like with Python coverage, RiveScript files that are not executed at all will not be part of your coverage
report. To add them, use the source = . or other more specific source specifier in the [run] section of your
.coveragerc file or the --source command line option. See the Coverage Documentation section “Specifying
source files” for more information on this.

2.1 More Information:

2.1.1 Installation

At the command line either via easy_install or pip:

$ easy_install rivescript_coverage_plugin
$ pip install rivescript_coverage_plugin

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv rivescript_coverage_plugin
$ pip install rivescript_coverage_plugin

5

https://coverage.readthedocs.io/

RiveScript Coverage Plugin Documentation, Release 0.1.0

2.1.2 Usage

To use RiveScript Coverage Plugin in a project, create or edit your .coveragerc file and add this:

[run]
plugins = rivescript_coverage_plugin

Now run the coverage command or pytest with the --cov option and your RiveScript files will automatically
be included in the coverage analysis and subsequent report generation.

Note that just like with Python coverage, RiveScript files that are not executed at all will not be part of your coverage
report. To add them, use the source = . or other more specific source specifier in the [run] section of your
.coveragerc file or the --source command line option. See the Coverage Documentation section “Specifying
source files” for more information on this.

2.1.3 Options

The options provided by the RiveScript Coverage Plugin are designed to help troubleshoot the plugin itself and should
not be needed by normal users. For completeness, they are documented here. The options go in your .coveragerc
file and are specified as follows:

[rivescript_coverage_plugin]
show_startup = True
show_parsing = True
show_tracing = True
clean_rs_objects = False
capture_streams = False

The default values are the opposite of what I show above. The options are defined as follows:

show_startup Show information about the plugin’s startup sequence is shown, including version information and
command line arguments. This is False by default.

show_parsing Show information about which lines of the RiveScript files are executable and which are not. This is
False by default.

show_tracing Generate a complete trace of the execution of the RiveScript interpreter, including which lines are being
marked as executed as we interpret the Debug output of the RiveScript interpreter. This is False by default.

clean_rs_objects Preserve the _rs_objects_ temporary directory, where the RiveScript Coverage Plug creates
files representing each < object NAME python in the RiveScript in order to trace it’s execution. This
directory will contain a rs_obj_NAME.py file for each object named NAME in your RiveScript. This is True
by default, which means this directory will be removed after analysis.

capture_streams Capture coverage when RiveScript is dynamically created using the rs.stream method. In order
to preserve these streams of RiveScript, a directory _rs_streams_ is created and each stream is identified
in a file named s-SOURCEFILE1_LINENO1-SOURCEFILE2_LINENO2.rive. Here, SOURCEFILE1
identifies the python source file containing the direct caller of rs.stream, and SOURCEFILE2 identifies a
parent caller that is not located in the same source file. The LINENOs identify the line numbers where the
call(s) occur. If multiple calls occur at the same place in the source code with different RiveScript strings being
passed, then a 3-digit occurence count will be appended to the filename. This directory of streams is left in place
after coverage analysis exits, so that when you run coverage html, it will be able to annotate the files with
coverage information. If this is specified as False, then no coverage is captured for streams. (Since v1.1.0)

6 Chapter 2. Getting Started

RiveScript Coverage Plugin Documentation, Release 0.1.0

2.1.4 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/snoopyjc/rivescript_coverage_plugin/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

RiveScript Coverage Plugin could always use more documentation, whether as part of the official RiveScript Coverage
Plugin docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/snoopyjc/rivescript_coverage_plugin/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up rivescript_coverage_plugin for local development.

1. Fork the rivescript_coverage_plugin repo on GitHub.

2. Clone your fork locally:

2.1. More Information: 7

https://github.com/snoopyjc/rivescript_coverage_plugin/issues
https://github.com/snoopyjc/rivescript_coverage_plugin/issues
https://github.com/snoopyjc/rivescript_coverage_plugin/fork

RiveScript Coverage Plugin Documentation, Release 0.1.0

$ git clone git@github.com:your_name_here/rivescript_coverage_plugin.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, check that your changes pass unit tests, including testing other Python
versions with tox:

$ tox

To get tox, just pip install it.

5. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6, 3.7, and for PyPy. Check https://travis-ci.org/snoopyjc/rivescript_
coverage_plugin under pull requests for active pull requests or run the tox command and make sure that the
tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ test/testrcp.sh

2.1.5 Credits

Development Lead

• Joe Cool <snoopyjc@gmail.com>

Contributors

None yet. Why not be the first?

8 Chapter 2. Getting Started

https://travis-ci.org/snoopyjc/rivescript_coverage_plugin
https://travis-ci.org/snoopyjc/rivescript_coverage_plugin
mailto:snoopyjc@gmail.com

RiveScript Coverage Plugin Documentation, Release 0.1.0

2.1.6 History

0.1.0 (2020-01-16)

• First release on PyPI.

0.2.0 (2020-01-17)

• Fix Issues #1-#4

0.2.1 (2020-01-19)

• Fix Issue #5

0.2.2 (2020-01-19)

• Fix Issue #6

0.2.3 (2020-02-23)

• Fix Issue #7, #8

1.0.0 (2020-02-28)

• Add syntax highlighting, fixup some documentation issues, and fix issues #9-#14.

1.1.0 (2020-03-29)

• Fix issues #15-#18 and #21.

2.2 Feedback

If you have any suggestions or questions about RiveScript Coverage Plugin feel free to email me at
snoopyjc@gmail.com.

If you encounter any errors or problems with RiveScript Coverage Plugin, please let me know! Open an Issue at the
GitHub http://github.com/snoopyjc/rivescript_coverage_plugin main repository.

2.2. Feedback 9

mailto:snoopyjc@gmail.com
http://github.com/snoopyjc/rivescript_coverage_plugin

	Features
	Getting Started
	More Information:
	Feedback

